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1. Executive Summary. 
 
The overall objective of the project was to enable the development and execution of 
secure applications that use third party software components developed by a variety of 
vendors, and restrict how code shares the application memory space, and provide 
isolation within the application space. An integrated hardware-software approach was 
developed, and this has the potential of significantly raising the barrier against such 
attacks and that, in addition, includes an orderly recovery process. The solution augments 
current computing platforms with hardware that enforces limits on resources accessed by 
the software packages – these hardware wrappers ensure that a software application can 
only read its own memory, cannot engage in denial-of-service and that a violation results 
in a hardware-supervised automated recovery process. The hardware wrapper is based on 
a manifest generated during application development process and contains information on 
authorized memory access policies, timing information, and recovery code. The 
conventional CPU is modified to incorporate an enforcement engine which checks the 
manifest at run-time to detect and prevent any unauthorized access to memory and to 
invoke recovery process after an attack is detected. In addition to the original objectives, 
investigations were started on topics related to the project objectives with a focus on 
embedded systems. Modern embedded control systems feature multiple processors that 
must coordinate sensing and action. For this reason, the research explored extending the 
monitoring and recovery features to the context of distributed control. In particular, the 
focus was on language and runtime support for distributed control of actuators in the 
presence of attacks and failures. 
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To achieve the goal, research was conducted to integrate and advance current techniques 
in security, computer architecture, compilers, and languages to develop novel system to 
protect against attacks through backdoors placed in third party software. The specific 
research objectives included: 

• Architecture design to implement the hardware wrappers and containers concept 
• Manifest/meta-information needed to track authorized accesses 
• Testbed and simulation infrastructure development to quantify and measure 

performance in terms of architecture parameters. 
• Performance analysis to evaluate overhead incurred by our approach, 
• Design, and evaluation, of language and runtime support for distributed control of 

actuators in the presence of attacks and failures. 
The innovation in the approach was in developing a solution that exploited the power of 
integrated software-hardware techniques. The results of this research included 
architectures for fine grained protection of memory and involved design of algorithms, 
models for automated recovery, programming language and runtime support, architecture 
design, compiler techniques, simulations, and performance analysis. Several techniques 
were proposed and designed to address these objectives. The research involved faculty 
and graduate students at the doctoral level, and partly supported two completed doctoral 
dissertations. The overall impact of the research is in the development of secure 
applications that use third party code. 
  
2. Status of Effort: 
 
The research proposed involved a number of research areas: (1) design of the architecture, 
and compiler support, for protection against attacks on an application through backdoors 
placed in third party code; (2) explore the use of reconfigurable logic as a hardware 
acceleration platform to implement security mechanisms; (3) exploring system support 
for hardware structures; and (4) development of complete architecture and system 
simulation infrastructure to measure the effectiveness of the proposed solution.    
  
A hardware-software approach was taken to provide a secure execution environment that 
uses third party code. The idea is to prevent attacks launched from third party code 
through application’s memory space. The solution approach places each software 
package in a hardware wrapper, or each software component in a hardware container. 
(We use the terms wrapper and container to primarily distinguish the granularity at which 
we apply our software protection technique.) The innovation in our approach is to 
augment the standard von Neumann architecture with a few hardware primitives to 
carefully check memory accesses and CPU usage at runtime so that no application, or 
software package, can access memory beyond specific bounds nor can slow down the 
CPU by hogging compute-time. In addition, we performed preliminary research that 
focused on language and runtime support for secure embedded system in the context of a 
distributed control system. 
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Figure 1: Hardware-Software Processes in our Approach 
 
 
 
The effort for developing our secure execution environment lies on two fronts, as shown 
in Figure 1, which illustrates the hardware-software processes in our approach:  

(a) On the software engineering front are extraction of program properties (i.e., the 
meta properties needed to track accesses), compiler techniques, and writing of 
recovery code that satisfies the developer’s security policies. These properties 
would determine the manifest/meta-information needed to track unauthorized 
access.  In addition, on the secure, robust embedded systems with distributed 
control, the development of language and runtime features for distributed control 
of actuators in the presence of attacks, failures, and timing constraints. 

(b) On the computer architecture front, design of a trusted execution platform that 
validates fine-grained memory access, checks control flow, and enforce an orderly 
recovery procedure. In addition, design of high-throughput, low-latency 
cryptographic hardware using reconfigurable logic to provide fast implementation 
of cryptographic techniques.  

 
We demonstrated through a series of experiments that fine-grained memory protection, as 
provided by our approach, is both practical and achievable. Further, we showed that 
architectural optimizations and careful design and integration of wrappers with the 
processor pipeline could result in modest performance penalty while providing improved 
security. This suggests that our approach of hardware wrappers provides an effective 
secure execution environment for modern embedded systems which use third party code. 
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Figure 2: Wrapper Concept 
 
 
 
                        
 

 

                                
 

Figure 3: Architecture Overview 
 
 
3. Summary of Accomplishments 
We made progress on several fronts in the project, both on the primary objective of 
developing the hardware wrappers concept as well as other complementary objectives 
that were identified during our investigations. Below we itemize these achievements by 
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topic and summarize the main results obtained. More detailed results are available in the 
papers listed in the publications section, and available at 
http://www.seas.gwu.edu/~narahari/afosr/ . 
 
1. Hardware Wrapper Concept and Architecture:  
 
An application may be developed using open source third party software, including 
libraries and plug-ins. In the conventional architecture, shown on the left half of Figure 1, 
malicious code in the third-party software can make an unauthorized access to the user 
code’s memory (since the user specified this malicious code as part of their application) 
and launch various kinds of attacks on the code and data. In our approach [15,16], as 
shown in the right half of the Figure 2, a conventional application’s components are 
instrumented with a wrapper, which is a manifest containing metadata created at the time 
of application development that specifies the resources needed by individual software 
components/packages and also contains recovery code. Our approach modifies the 
standard von Neumann architecture, Figure 3, by providing a wrapper enforcement 
engine to enable fast runtime checking of memory accesses and CPU usage by packages. 
These checks are made against the manifest. At run-time, the hardware detects improper 
memory accesses (reads or writes) or denials-of-service (slowing down the CPU) and can 
detect an attack or initiate a hardware-supervised recovery process that restores operation 
and also records a snapshot of events that might assist a forensic examination of the 
attack. Thus, a malicious component that misuses a pointer, to make an unauthorized 
memory access, or runs in an infinite loop, will be trapped by the supporting hardware 
and the attack will be detected and prevented. The hardware can then oversee an orderly 
recovery. The recovery process we outlined in [17] could itself be a chain of interrupts 
going back up the component creation hierarchy all of which is supervised and enforced 
by the hardware so that the recovery process itself cannot be hijacked. 
 
A primary goal of our Hardware Wrappers approach was to make both our hardware and 
software enhancements as transparent as possible. In the case of hardware, we provide 
the bulk of the needed hardware functionality in a module called the Wrapper Manager 
that sits between the CPU and cache as shown in the Figure 3. In this manner, a processor 
designer would merely insert our module and interface it with both the CPU and the 
cache. Similarly, our goal in software is to have most of the work done by the compiler 
and loader, with minimal work required for the programmer. In fact, the only action on 
the part of the programmer is to define the units of isolation – this requires modification 
of a software development tool that builds the application (such as make). Figure 3 also 
shows the additional bookkeeping data (the permissions) stored in main memory, which 
are fetched into the Wrapper Manager as needed to enforce isolation boundaries.  
 
The wrapper architecture, a hardware-software technique to provide fine-grained memory 
protection, was evaluated by through a prototype implementation and measuring the 
performance overhead. Several techniques were developed to reduce the performance 
overhead. We built a full system support for fine-grained memory access and developed 
of a full-blown system simulator using Opal/Gems toolkit. Further, we explored 
concurrency support for management of wrappers and evaluating and improving 
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multithreaded performance by optimizing cost of context switches. Extensive 
experiments were conducted using our simulation infrastructure, and the salient 
experimental results are tabulated in Appendix A along with details of the experimental 
platform. Some key accomplishments and observations are summarized in what follows, 
and are reported in detail in [2,3,15,16]. 
 

• Performance Overhead incurred by Hardware Wrappers. The big challenge 
in our approach to fine-grained memory protection, using wrappers, is to 
minimize the performance overhead incurred by the extra cycles taken by the 
processor to check the authorizations, by checking the manifests in the wrapper 
enforcement engine. After careful architectural optimizations, our system incurred 
very modest average overhead of approximately 15% across a range of 
benchmarks. Figure 4 in Appendix provides the tabulated results of our 
experiments, including the effect of architectural optimizations on the 
performance.  

• Concurrency support for wrappers management. The traditional model of 
processes and threads strongly relates to where protection boundaries exist. 
Instead of multiple execution sequences inside a protection domain, hardware 
wrappers introduce multiple protection domains inside a continuous execution 
sequence. Wrappers hardware automatically manages the context switch between 
security protection domains, but the hardware is unaware of a task context switch 
which requires loading the wrapper metadata for the new task. We extended 
RTEMS operating system with support for the new model of security context 
switching thus providing concurrency support in our wrapper architecture. 

• Evaluating and improving multithreaded performance. The performance 
overhead caused by using hardware wrappers for multithreaded applications 
includes both the overhead of a single-threaded application and the increased cost 
of the context switch. We explored different strategies for optimizing context 
switches. By increasing bus width, between wrapper manager and cache, the 
overhead due to context switch was reduced to 8% (Figure 5).  

• Improving permission assignment for dynamic data structures. Complex data 
structures, such as linked lists, trees or graphs, pose a challenge for permission 
assignments. In order to pass the full structure to another principal for processing 
the same processing as traversing the data structure is needed for security 
attributes assignment. We created a variant of the permission delegation primitive: 
ALLOWM (allow multi) that receives as parameters the number of ranges and the 
location in memory of security permission data structure that holds multiple 
delegation attributes. Such security attributes can be made part of the data 
structure itself and maintained by the base operations (such as add, remove, etc) 
and reused without re-parsing the structure. 

• A micro benchmark for evaluating wrappers. We continued to enhance our 
benchmark suite with a set of synthetic tests that allow us to vary program 
features that affect the performance cost of using wrappers.  

• Enhancing the security and safety of object-oriented languages with 
wrappers. Object-oriented programming languages like C++ allow developers to 
encapsulate the inner workings of object implementation with access specifiers 
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such as public and private. A compiler can then enforce encapsulation by 
checking whether object interactions violate the specified visibility. However, 
encapsulation is easily broken if a program uses direct memory access—for 
example, with pointers. Thus C++ programmers are taught that “private is not 
secure.” This maxim is a result of the general security problems that unchecked 
pointers can bring. Hardware wrappers enable fine-grained memory access 
control to constrain memory accesses to well-defined boundaries, which we use to 
provide programmers with the ability to enforce both encapsulation and memory 
safety for C++ programs. Providing applications written in C++ with internal 
memory protection—that is, protection between objects executing in the same 
thread—is difficult because of the intricate features in C++. In particular, 
inheritance and class composition frustrate hardware enforcement of 
encapsulation, and the dynamic behavior of objects at runtime, such as 
polymorphism and exception-handling, presents challenges for hardware 
monitoring of memory accesses. 
 

2. Systems software support for hardware data structures.  
As we explore the role of hardware and systems software in security we see that the 
interfaces between applications and memory are primitive and inefficient. For 
example, the ALLOWM primitive requires enhanced knowledge of how algorithms 
act on data structures. Using our simulation test bed we have developed novel 
techniques for managing data structures that admit to efficient hardware support [1,7]. 
In particular, we are using priority queues as an example data structure that has many 
practical applications—almost any sorting problem can be solved with a priority 
queue—and has an efficient hardware implementation. Our research explored how 
the limitations of the hardware (size and inflexibility) can be circumvented by 
systems software support. By moving data structures into hardware, we can 
implement tight memory access bounds on applications by constraining code to 
accessing data structures through hardware interfaces secured by hardware wrappers. 
 
3. Untrusted Hardware: We also explored the complementary problem of designing 
a secure execution environment when the hardware, and specifically the Integrated 
Chip (IC), may be compromised at the fabrication foundry by third party developers. 
Our  solutions explored (i) limiting the amount of data that could leak “out” of a 
hardware wrapper over a system memory bus [11], (ii) looking into some real-world 
implementation issues [14], and (iii) proposing mechanisms to validate that 
manufactured hardware is true to its design [8]. This is complementary to the main 
architectural wrappers approach and should provide consumers of our technology 
some added confidence that the wrapper hardware itself can be protected.  

 
4. Language and Runtime Support for Distributed Control of Secure Embedded 
Systems.  We explored the language support for embedded systems that feature 
distributed control, such as those applied in robotics, control software, and avionics. 
The goal was to understand the systems infrastructure needed to support robust, 
secure embedded systems.  We explored an infrastructure for distributed control built 
on the Lua run-time system.  We chose the Lua run-time system as it has a very small 
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code base, which made extending and modifying the language and run-time 
environment a fairly easy process.  However, object-oriented programming in Lua is 
not as accessible as it is in other programming languages. To facilitate the ease of 
object-oriented programming in our system, we developed a fairly rudimentary 
Python to Lua translator.  This translator will not convert legacy Python code to Lua, 
but any code written with the intent of being translated will work.  We also ported 
Lua to RTEMS, which will allow us to modify the architectural simulator in the 
future to investigate how architectural modifications can better support the robustness 
of our system. Only a few changes were needed to get Lua to execute in RTEMS, and 
the main change was to Lua's timing mechanisms.  Since RTEMS is run in a 
simulator, there is no macro defined which can be used to convert the clock() into 
seconds like Lua expects.  A separate system call is used to access the ticks per 
second the simulator is configured to run.  This change allows us to obtain fairly 
precise timing of not only program execution, but also specific language features we 
wish to test. Within the new Lua run-time system, we are implementing distributed 
control tasks that model multiple agents (e.g. robots) that must coordinate to complete 
each task. As each agent executes, its system-level parameters can be measured and 
maintained within a secure envelope defined by a wrapper.  
 
5. Reconfigurable Logic for Cryptographic Needs of Wrapper Architecture. 

 
We looked at the high-throughput, low-latency cryptographic needs of the wrapper 
hardware, based on its placement in the memory hierarchy [12,18,9,10]. A continued 
investigation into conventional private-key cryptography provided evidence that 
while throughput requirements could be met using conventional block ciphers such as 
AES, there would be (variable) high latency requirements. This could potentially 
cause problems for implementation in real-time systems. We then expanded our 
hardware crypto work to look at stream ciphers, and have found that approaches 
based on chaotic cryptography show some promise for this application [18]. With 
safety critical systems as the focus of our investigations, we also continued to explore 
solutions for hardening embedded platforms that operate in adversarial environments. 
This includes encrypted execution and control flow verification with minimum 
architectural changes [10].  
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Appendix A: Experimental Platform and Results. 
 
We implemented and simulated our Wrapper architecture and evaluated its architectural 
effectiveness through extensive simulations.  

 
Simulation Infrastructure and Test Bed.  
 
In order to evaluate a system enhanced with our wrapper mechanism, we conducted a 
series of simulations that provide an accurate comparison between an unprotected system 
and a security enhanced device. As expected, the extra validations, code instrumentations 
and run-time metadata cause a performance penalty. We developed a simulator-based 
infrastructure for evaluating the performance impact of using wrappers to secure 
embedded systems. We implemented the wrapper hardware on top of a modern processor 
architecture based on the UltraSPARC III architecture. The UltraSPARC III represents an 
iteration of a long line of RISC processor designs, and it is equipped with state-of-the-art 
architectural features. Simics/GEMS implements a cycle-accurate model of a complex 
out-of-order architecture with functional simulation of the UltraSPARC III instruction set. 
We implemented extensions to GEMS and plugins for Simics to emulate the hardware 
features of the wrapper reference monitor. We chose architectural parameters of our 
simulation and experiments to match typical system-on-chip and embedded platforms 
available as commercial products. To demonstrate the feasibility of the fine-grained 
memory access control in a complex software environment we chose RTEMS as a 
suitable OS. We developed a Board Support Package (BSP) for the UltraSPARC III (and 
OpenSparc Niagara) and contributed it as the first 64-bit target port for RTEMS; it is now 
part of the upstream RTEMS distribution. RTEMS is POSIX-compliant and offers 
support for custom task extensions including a context switch call-out, which we utilized 
to implement the wrapper context switch. We evaluate the performance of our solution 
with experiments using benchmark applications from MiBench, the Data Intensive 
Systems (DIS) benchmark suite, a reduced size Dhrystone test, and the heap-intensive 
Richards benchmark. Graphical results are presented as the percent overhead compared 
with the baseline execution time, so a lower percentage represents better performance. 
Figure 4 shows the performance cost of using hardware wrappers across a sample of the 
benchmarks. 
 
Experimental Results 
 

• Concurrency support for wrappers management. The traditional model of 
processes and threads strongly relates to where protection boundaries exist. 
Instead of multiple execution sequences inside a protection domain, hardware 
wrappers introduce multiple protection domains inside a continuous execution 
sequence. Wrappers hardware automatically manages the context switch between 
security protection domains, but the hardware is unaware of a task context switch 
which requires loading the wrapper metadata for the new task. We extended 
RTEMS with support for the new model of security context switching: on a 
context switch, the OS saves together with the normal execution context (registers, 
program counter) the dynamic part of the security context (dynamic permission 
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buffer and dynamic permissions from the container run-time record) for the active 
container. We implemented the context switch as a RTEMS task extension. Task 
switching is triggered by the OS, which notifies the container manager by a 
dedicated instruction that handles security context saving, flushing and loading 
the new context before allowing the task to continue execution. 

• Evaluating and improving multithreaded performance. The performance 
overhead caused by using hardware wrappers for multithreaded applications 
includes both the overhead of a single-threaded application and the increased cost 
of the context switch. We explore three strategies for optimizing context switches. 
The first is a simple extension to the controller logic that allows loads and stores 
to be validated against partially loaded permission list. If a hit occurs, the memory 
operation is valid. If not instead of triggering a security violation, the CM 
continues to stall the pipeline and retries the memory access once the permission 
list is fully loaded. Experimental results show us a reduction in stalled loads to as 
much as 21% and stalled stores up to 30% in the best cases. The second 
optimization considers a windowing mechanism that matches the register window 
of the processor for the container manager. Such a mechanism reduces many of 
the memory transfers during a security context switch, at the cost of a much 
higher chip space used. We obtained the most significant overall speedup after an 
architectural optimization—bus widening—that reduces the bandwidth bottleneck 
between the container manager and the permission cache. For register to memory 
operations a word size bus (16/32/64 bit) is typically used. For context switch 
operations, the CM transfers large continuous sequences, consisting of permission 
lists. Increasing the bus width by a factor of 2 or 4 significantly reduces the 
performance bottleneck. Figure 5 shows the cost of context switching as 
frequency increases, how adding wrapper management to the context switch 
increases that cost, and how bus widening reduces the cost. 

 
 

• A microbenchmark for evaluating wrappers. We continued to enhance our 
benchmark suite with a set of synthetic tests that allow us to vary program 
features that affect the performance cost of using wrappers. In particular our 
microbenchmark allows us to control the rate and ratio of memory operations, 
function calls, and cpu-intensive workloads. Figure 6 shows the results of our 
synthetic tests as we vary the ratio of function calls to total number of instructions. 
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Figure 4. Performance cost of benchmarks with hardware wrappers (smaller is 

better). Hardware optimizations reduce the cost: most improvement is gained by 
increasing the cache bus width. 

 

 
 

Figure 5. Context switch cost as frequency increases. Shows how bus widening 
reduces the cost, and how the cost compares to the cost without any wrapper 

management during the context switch. 
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Figure 6. How varying the ratio of function calls to other instructions affects 
performance. 
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